Small Language Models Under 4GB: What Actually Works?
Never get stuck without AI again. Run three Small Language Models (SLMs)—also called Local LLMs—TinyLlama, Gemma-3 and Phi-4-mini—completely offline; all fit in 4 GB or less and work on any laptop and older hardware.
────────────────────
🔧 Hardware & Software used
• Laptop Ryzen 5 4500U, 8GB RAM, Ollama (no GPU needed!)
• Phone iPhone 13 Pro with Mobile PocketPal AI (local GGUF)
────────────────────
🔗 Model resources
• ChatGPT global outage (news)
https://timesofindia.indiatime....s.com/etimes/trendin
• Phi-4-mini reasoning paper
https://www.microsoft.com/en-u....s/research/wp-conten
• TinyLlama 1.1 https://huggingface.co/TinyLlama/TinyLlama_v1.1
└ GGUF Q4_0 637 MB https://huggingface.co/TheBlok....e/TinyLlama-1.1B-Cha
• Gemma-3 https://huggingface.co/blog/gemma3
└ GGUF Q4_K_M 0.8 GB https://huggingface.co/Maziyar....Panahi/gemma-3-1b-it
• Phi-4-mini https://huggingface.co/microso....ft/Phi-4-mini-reason
└ GGUF Q4_K_M 2.5 GB https://huggingface.co/lmstudi....o-community/Phi-4-mi
────────────────────
🎬 More on local AI
• End of VRAM? https://youtu.be/M9ZphDPRP_w
• Is local AI image generation dying? https://youtu.be/ad7jBaNgIW8
🛠 Support the channel
Patreon https://www.patreon.com/NextTechAndAi
────────────────────
▼ Comment Poll
What would YOU use offline AI for?
#SmallLanguageModels #LocalLLM #OfflineLLM #LocalAI
Generative AI